Category Archives: IT Strategy

Hyper-converged Infrastructure: Hype or For Real?

One of the hottest emerging technologies in IT is hyper-converged infrastructure (HCI). What is the hype all about? Is it here to stay?

As defined by Techtarget, hyper-convergence infrastructure (HCI) is a system with a software-centric architecture that tightly integrates compute, storage, networking, virtualization resources (hypervisor, virtual storage, virtual networking) and other technologies (such as data protection and deduplication) in a commodity hardware box (usually x86) supported by a single vendor.

Hyper-convergence grew out of the concept of converged infrastructure, where engineers took it a little further – using very small hardware footprint, tight integration of components and simplified management. It is a relatively new technology. On the technology adoption curve, it is still at the early adopters stage.

Nutanix is the first vendor to offer hyper-converged solution, followed by Simplivity, and Scale Computing. Not to be outdone, VMWare developed its EVO-RAIL, then opened it for hardware vendors to OEM the product. Major vendors, including EMC, NetApp, Dell, HP, and Hitachi began selling EVO-RAIL products.

One of the best HCI product that I’ve seen is VxRail. Jointly engineered by VMware and EMC, the “VxRail appliance family takes full advantage of VMware Hyper-Converged Software capabilities and provides additional hardware and lifecycle management features and rich EMC data services, delivered in a turnkey appliance with integrated support.”

What are the advantages of HCI and where can it be used? Customers who are looking to start small and be able to scale out overtime, will find the HCI solution very attractive. It is a perfect fit for small to medium size companies, to be able to build their own data center without spending huge amount of money. It is simple (because it eliminates a lot of hardware clutter) and highly scalable (because it can be scaled very easily by adding small standardized x86 nodes). Since it is scalable, it will ease the burden of growth. Finally, its performance is comparable to big infrastructures because leveraging SSD storage and bringing the data close to the compute enables high IOPS at very low latencies.

References:

1. Techtarget
2. VMware Hyper-Converged Infrastructure: What’s All the Fuss About?

Replicating Massive NAS Data to a Disaster Recovery Site

Replicating Network Attached Storage (NAS) data to a Disaster Recovery (DR) site is quite easy when using big named NAS appliances such as NetApp or Isilon. Replication software is already built-in on these appliances – Snapmirror for NetApp and SyncIQ for Isilon. They just need to be licensed to work.

But how do you replicate terabytes, even petabytes of data, to a DR site when the Wide Area Network (WAN) bandwidth is a limiting factor? Replicating a petabyte of data may take weeks, if not months to complete even on a 622 Mbps WAN link, leaving the company’s DR plan vulnerable.

One way to accomplish this is to use a temporary swing array by (1) replicating data from the source array to the swing array locally, (2) shipping the swing frame to the DR site, (3) copying the data to the destination array, and finally (4) resyncing the source array with the destination array.

On NetaApp, this is accomplished by using the Snapmirror resync command. On Isilon, this is accomplished by turning on the option “target-compare-initial” in SynqIQ which compares the files between the source and destination arrays and sends only data that are different over the wire.

When this technique is used, huge company data sitting on NAS devices can be well protected right away on the DR site.

Book Review: The Industries of the Future

I came across this book while browsing the New Arrivals section at a local bookstore. As a technology enthusiast, the title has piqued my interest. However, the other reason why I wanted to read this book was to find an answer to the question “How do we prepare our children for the future?” As a father of a teenage daughter, I would like to provide her with all the opportunities and exposure she needs to enable her to make the right career choice and be better prepared for the future.

The author Alec Ross states in the introduction, “This book is about the next economy. It is written for everyone who wants to know how the next wave of innovation and globalization will affect our countries, our societies, and ourselves.”

The industries of the future are:

1. Robotics. Robots have been around for many years, but the ubiquity of network connection, availability of big data, and faster processors are making significant progress in robotics.

2. Genomics. If the last century is the age of Physics, the coming century will be the the age of Biology. The sequencing of genomics has opened the door to many opportunities in life sciences.

3. Blockchains. The financial industry and the way we handle commerce will be transformed by this technology.

4. Cybersecurity. The Internet will be the next place where war between nations will be waged.

5. Big Data. Use of predictive analytics or other advanced methods to extract value from data will allow us to “perform predictions of outcomes and behaviors” and alter the way we live.

There is nothing new about these technologies. However, what made the book really worth reading were the examples, anecdotes and interesting stories told by Ross. The author has traveled extensively around the world and has first hand experience of these technologies.

Back to the question, “How do we prepare our children for the future?” —  the best thing we can do is to encourage them to pursue a career in science and technology and allow them to travel so they will be comfortable in a multicultural world.

Translating Business Problems into Technology Solutions

One of the most important jobs of IT Consultants/Architects is to translate business problems into technology solutions. Many companies today and in the future will need to solve business problems to remain competitive. Exponential advances in information technology will enable businesses to solve problems.

But translating business problems into technology solutions is often hard. Most of the time there is a disconnect between business people and technology people. For example, business people speak of vision, strategy, processes, and functional requirements, whereas technology folks speak about programming, infrastructure, big data and technical requirements. In addition, people who understand the business typically are not smart about technology, and vice versa – technology folks often do not understand business challenges. Both have totally different perspectives – business folks are concerned about business opportunities, business climate, and business objectives, while technology folks are concerned about technology challenges, technical resources, and technical skills.

To be successful, IT Consultants/Architects should bridge the gap and provide businesses the services and the solution they need. IT Consultants/Architects need to translate business objectives into actions. In order to do this, they should be able to identify business problems, determine the requirements to solve problems, determine the technology available to help solve them, and architect the best solution. In addition, they should be able to identify strategic partners that will help move the project and determine likely barriers.

Most importantly though, IT Consultants/Architects should be able to manage expectations. It’s always better to under promise and over deliver.

Object Storage

A couple of days ago, a business user asked me if our enterprise IT provides object-based storage. I heard the term object storage before but I have little knowledge about it. I only know it’s a type of storage that is data aware. I replied “No, we don’t offer it yet.” But in the back of my mind, I was asking myself, should we be offering object storage to our users? Are we so behind, we haven’t implemented this cool technology? Is our business losing its competitive advantage because we haven’t been using it?

As I research more on the topic, I understood what it entails, its advantages and disadvantages.

Object storage is one of the hot technologies that is expected to grow adoption this year. As defined by Wikipedia, object storage, “is a storage architecture that manages data as objects, as opposed to other storage architectures like file systems which manage data as a file hierarchy and block storage which manages data as blocks within sectors and tracks. Each object typically includes the data itself, a variable amount of metadata, and a globally unique identifier.”

Its extended metadata allows for some intelligence in the data. For example, a user or application can tag a data object what type of file it is, how it should be used, who will use it, its contents, how long it should live, and so on. That metadata information could, in turn, inform a backup application, for instance, that the object is classified or that it should be deleted on a certain date. This makes tasks like automation and management simpler for the administrator.

The globally unique identifier allows a server or end user to retrieve the data without needing to know the physical location or hierarchical location of the data. This makes it a useful data storage for long-term data retention, backup, file-sharing, and cloud application. In fact, Facebook uses object storage when you upload a picture.

One drawback of object storage is performance – slow throughput and latency due to the amount of metadata. Another drawback is that data consistency is achieved slowly. Whenever an object is updated, the change has to be propagated to all of the replicas which takes time before the latest version becomes available. With these properties, it’s well suited for data that doesn’t change much, like backups, archives, video, and audio files. That’s why it’s heavily used by Facebook, Spotify, and other cloud companies because once you upload a picture or music file, it doesn’t change much and it stays forever.

Object storage may be one of the hottest technologies in the storage space, but for now, I don’t see compelling use cases in enterprise IT. Object storage is unsuitable for data that changes frequently. File systems and block storage do just fine in storing data that rarely changes or data that frequently changes. Enterprise backup systems are versatile as well for long-term data retention and backups. Object storage may provide more information about the data, but storage administrators primary concerns are to deliver the data faster and more efficiently, as well as to protect its integrity.

Object storage distributed nature enables IT shops to use low cost storage, but in reality, in enterprise IT, NAS and SAN are prevalent because they are reliable and easier to manage.

We need well defined use cases and compelling advantages for object-based storage to be widely used in enterprise IT.

Data Protection Best Practices

Data protection is the process of safeguarding information from threats to data integrity and availability.  These threats include hardware errors, software bugs, operator errors, hardware loss, user errors, security breaches, and acts of God.

Data protection is crucial to the operation of any company and a sound data protection strategy must be in place. Following is my checklist of a good data protection strategy, including implementation and operation:

1. Backup and disaster recovery (DR) should be a part of the overall design of the IT infrastructure.  Network, storage and compute resources must be allocated in the planning process. Small and inexperienced companies usually employ backup and DR as an afterthought.

2. Classify data and application according to importance.  It is more cost-effective and easier to apply the necessary protection when data are classified properly.

3. With regards to which backup technology to use – tape, disk or cloud, the answer depends on several factors including the size of the company and the budget.  For companies with budget constraints, tape backup with off-site storage generally provides the most affordable option for general data protection.  For medium-sized companies, a cloud backup service can provide a disk-based backup target via Internet connection or can be used as a replication target. For large companies with multiple sites, on-premise disk based backup with remote WAN-based replication to another company site or cloud service may provide the best option.

4. Use snapshot technology that comes with the storage array. Snapshots are the fastest way to restore data.

5. Use disk mirroring, array mirroring, and WAN-based array replication technology that come with the storage array to protect against hardware / site failures.

6. Use continuous data protection (CDP) when granular rollback is required.

7.  Perform disaster recovery tests at least once a year to make sure the data can be restored within planned time frames and that the right data is being protected and replicated.

8. Document backup and restore policies – including how often the backup occurs (e.g. daily), the backup method (e.g. full, incremental, synthetic full, etc), and the retention period (e.g. 3 months).  Policies must be approved by upper management and communicated to users.  Document as well all disaster recovery procedures and processes.

9. Monitor all backup and replication jobs on a daily basis and address the ones that failed right away.

10.  Processes must be in place to ensure that newly provisioned machines are being backed up.  Too often, users assume that data and applications are backed up automatically.

11. Encrypt data at rest and data in motion.

12. Employ third party auditors to check data integrity and to check if the technology and processes work as advertised.

A good data protection strategy consists of using the right tools, well trained personnel to do the job, and effective processes and techniques to safeguard data.

Enterprise File Sync and Share

Due to increased usage of mobile devices (iPhone, iPad, Android, tablet, etc) in the enterprise, the need for a platform where employees can synchronize files between their various devices is becoming a necessity. In addition, they need a platform where they can easily share files both inside and outside of the organization. Some employees have been using this technology unbeknownst to the IT department. The popular file sync and share cloud-based app dropbox has been very popular in this area. The issue with these cloud-based sync-and-share apps is that for corporate data that are sensitive and regulated, it can pose a serious problem to the company.

Enterprises must have a solution in their own internal data center where the IT department can control, secure, protect, backup, and manage the data. IT vendors have been offering these products over the last several years. Some examples of enterprise file sync are share are: EMC Syncplicity, Egnyte Enterprise File Sharing, Citirx Sharefile, and Accellion Kiteworks.

A good enterprise file sync and share application must have the following characteristics:

1. Security. Data must protected from malware and it must be encrypted in transit and at rest. The application must integrate with Active Directory for authentication and there must be a mechanism to remote lock and/or wipe the devices.
2. Application and data must be supported via WAN acceleration, so users do not perceive slowness.
3. Interoperability with Microsoft Office, Sharepoint, and other document management system.
4. Support for major endpoint devices (Android, Apple, Windows).
5. Ability to house data internally and in the cloud.
6. Finally, the app should be easy to use. Users’ files should be easy to access, edit, share, and restore, or else people will revert back to cloud-based apps that they find super easy to use.

The Battle Between External Cloud Providers and Internal IT Departments

Nowadays, when business units require computing resources for their new software application, they have a choice between using an external provider or using the company’s internal IT department. Gone are the days when they solely rely on the IT department to provide them with compute and storage resources. Business units are now empowered because of the growing reliability and ubiquity of external cloud providers such as Amazon Web Services (AWS).

Services provided by external providers are generally easy to use and fast to provision. As long as you have a credit card, a Windows or Linux server can be running within a few hours, if not minutes. Compare that to internal IT departments which usually take days, if not weeks, to spin-up one. Large companies especially have to follow a bureaucratic procedure that takes weeks to complete.

Because of this, business units who are under the pressure to provide the application or service to the end users end up using external providers. This is the fast growing “shadow IT.” More often than not, IT departments do not know about this, until they are called to troubleshoot issues, such as to fix a slow network connection or to restore data after a security breach or data loss.

Using external providers can be good for the company. They have their merits such as fast provisioning and ability to quickly scale up, but they also have their limitations. Security, vendor lock-in, integration with on-premise applications and databases are some of the concerns. Some of these business units do not know the implication on the company’s network which may impact users during normal business hours. Some of them do not consider backup and disaster recovery. For regulated companies, compliance and data protection are important. They should be able to tell the auditors where the data resides and replicates. Also, as you scale up the use of compute and storage, it gets more costly.

External cloud providers are here to stay and their innovation and services will get better and better. The future as I foresee it will be a hybrid model – a combination of external providers and internal IT providers. The key for companies is to provide guidelines and policies on when to use external provider vs internal IT. For instance, a proof of concept application may be well suited to an external cloud because it is fast to provision. An application that is used only by a few users and does not need any integration with existing application is another one. Applications that integrates with the company’s internal SAP system, on the other hand, is well suited for internal cloud. These policies must be well communicated to business units.

For IT departments, they must be able to provide a good level of service to the business, streamline the process of provisioning, adapt technologies that are able to respond to the business quickly, and provide an internal cloud services that matches the services offered by external providers. This way, business units will be forced to use internal IT instead of external providers.

2015 Storage Trends

The world of data storage has seen significant innovation over the years. This year, companies will continue to adopt these storage technologies and storage vendors will continue to innovate and develop exciting products and services. Here are my top 5 storage trends for this year:

1. Software-defined storage (SDS) or storage virtualization will start to have huge adoption in tier-2 or tier-3 storage. Virtual storage appliances such as Nutanix and Virtual SAN-like solutions such as VMware virtual-SAN will find their way in companies looking for simple converged solutions.

2. The cost of flash storage will continue to drop, driving its deployment to tier-1, I/O intensive applications such as VDI. Flash storage will also continue to be used on server-side flash, and on hybrid or tiered-based appliances.

3. Small and medium companies will make headway in utilizing the cloud for storage, but mostly as backup and sync-and-share applications.

4. Storage vendors will release products with integrated data protection including encryption, archiving, replication, backup, and disaster recovery.

5. Finally, the demand for storage will continue to grow because of the explosion of big data, the “internet of things”, and large enterprises building redundant data centers.

Data-centric Security

Data is one of the most important assets of an organization; hence, it must be secured and protected. Data typically goes in and out of an organization’s internal network in order to conduct business and do valuable work. These days, data reside in the cloud, go to employees’ mobile devices or to business partners’ networks. Laptops and USB drives containing sensitive information sometimes get lost or stolen.

In order to protect the data, security must travel with the data. For a long time, the focus of security is on the network and on the devices where the data resides. Infrastructure security such as firewalls, intrusion prevention systems, etc. are not enough anymore. The focus should now shift to protecting the data itself.

Data-centric security is very useful in dealing with data breaches, especially with data containing sensitive information such as personally identifiable information, financial information and credit card numbers, health information and intellectual property data.

The key to data-centric security is strong encryption because if the public or hackers get ahold of sensitive data, it will show up as garbled information which is pretty much useless to them. To implement a robust data-centric security, the following should be considered:

1. Strong data at rest encryption on the server/storage side, applications and databases.
2. Strong in-transit encryption using public key infrastructure (PKI).
3. Effective management of encryption keys.
4. Centralized control of security policy which enforce standards and protection on data stored on the devices at the endpoints or on the central servers and storage.