Category Archives: IT Management

The Need for Using MFA in IT Infrastructure Devices

Multi Factor Authentication or MFA should be understood by now (hopefully) and should be widely used and implemented.

What is MFA? MFA is a simple best practice that adds an extra layer of protection on top of your user name and password. With MFA, when you sign in to a website or device, you will be prompted for your user name and password (the first factor — what you know), as well as for an authentication response from your MFA device (the second factor — what you have) such as a text message to your mobile device, or a string of numbers from an authenticator app (such as Google Authenticator). Taken together, these multiple factors provide increased security for your account settings and resources.

Most financial sites and apps, for instance, have been using MFA for years to protect your money.

In corporate settings, many breaches and cyberattacks are due to hackers gaining unauthorized access using accounts that are not properly protected. These accounts use simple and guessable passwords (Pasword123), factory default passwords, passwords written on sticky notes, passwords derived from social media profile (such as birthday or pet name), and passwords derived from social engineering and phishing attacks. Using multi factor authentication will lessen the risk of hackers gaining access to your corporate network.

However a lot of IT infrastructure devices do not use MFA. Privileged accounts on network routers, switches, application servers, database servers, hypervisors, storage and backup devices, etc. should use MFA to strengthen their security. Manufacturers should make it easy to configure MFA on these devices.

Creating a Cybersecurity Culture for your Organization

As more and more organizations are becoming digital, accelerated by the Covid-19 pandemic, it is imperative for businesses to build a culture of cybersecurity. This enables them to be more resilient in the face of growing cyber attacks.

Many of these organizations, especially in the manufacturing sectors, have developed a robust safety culture where every employee is trained, knowledgable, and constantly reminded of ways to stay safe and decrease the chance of accidents. But when it comes to cybersecurity, most organizations do not have a similar culture of security.

Just like building a safety culture, building a cybersecurity culture is a big undertaking and usually takes time. It involves transforming processes, changing mindset, getting support from leadership all the way to the top, and changing the way every employee works.

Many companies think that technology alone will solve cybersecurity problems. They rely on the IT department and in some cases on the security office – if one exists – to mitigate security issues. But the goal of every orgainization should be that everyone must feel personally responsible for keeping the company secure.

Building a culture of cybersecurity involves everyone’s attitudes, beliefs and values that will drive behaviors that will lead to better actions such as not clicking a link on a phishing email or not visiting an unknown website. At the heart of a culture of cybersecurity is getting every employee to execute their day-to-day activities in ways that keep the organization as secure as possible.

For more information on this topic and to gain insights on how to build a culture of cybersecurity, visit the MIT CAMS website at https://cams.mit.edu/research/

The Importance of Securing Your Company’s Intellectual Property

In the wake of the massive Solarwinds attack affecting major government institutions and public/private companies, the importance of securing your company’s Intellectual Property (IP) has never been more critical.

Companies should be worried that their valuable data, trade secrets, and IP are being stolen by cyber thieves, foreign hackers, and company insiders (current or former employees, partners, trusted customers, distributors, or vendors).  Stolen IP poses a significant threat to a company’s competitive advantage.  A bio-pharmaceutical company, for example, generates a ton of research/clinical data and manufacturing processes that are stored on premise and increasingly on the cloud.

Companies should protect their data.  They should learn the best practices in implementing operational and cyber security measures, instituting policies and processes, and educating end users. They should continually tweak and and re-evaluate their security practices.  They should deploy technologies that are effective in securing their data.

Attacks will only get more sophisticated and their frequency will only increase in the future. It’s better to be prepared than caught off guard.

The Five Stages of Crisis Management: COVID-19 in the US

I recently attended the virtual ISC2 Security Congress 2020. One of the keynote addresses was regarding crisis management by Harvard Kennedy School Professor Juliette Kayyem. She used to be Assistant Secretary at the Department of Homeland Security.

Crisis management is central to cybersecurity. When there is a breach or security incident, crisis management is invoked to minimize damage. A well executed crisis management program leads to a successful resolution in a short period of time.

I’d like to share this chart presented by Ms Kayyem on the five stages on how the COVID-19 was managed in the US, which is similar to the five stages of cybersecurity crisis management: Protection > Prevention > Response > Recovery > Resiliency

The keynote address can be viewed here: https://securitycongress.brighttalk.live/keynote-november-18/

Maintaining High Level of Information Security During the COVID-19 Pandemic

As more people are forced to work from home during this pandemic, it is important to maintain a high level of security to safeguard the company’s information assets as well as its employees.  Endpoints such as laptops not connected to corporate network are more vulnerable when used at home.  Stressed out employees are more prone to social-engineering attacks.  They may visit sites that are usually blocked on a corporate firewall. Not surprisingly, this is also the best time for bad actors to take advantage of this opportunity.  

To mitigate these risks, the company’s security office should work with the IT department in implementing the following security measures:

  1. Enhance user security awareness by using creative ways to make the users pay attention to the message, such as using short video instead of just sending email.  Emphasize COVID-19-themed scams and phishing email and websites.  
  2. Identify and monitor high-risk user groups. Some users, such as those working with personally identifiable information (PII) or other confidential data, pose more risk than others, and their activity should be closely monitored. 
  3. Make sure all laptops have the latest security patches.  Critical servers that are accessed remotely should also have the latest security patches.
  4. Critical servers should only be accessed via virtual private network (VPN)
  5. Users connecting to the corporate network via VPN should use multi-factor (MFA) authentication. Corporate applications in the cloud should also use MFA authentication
  6. If your Virtual Desktop Infrastructure (VDI) can handle the load, users should use virtual desktops in accessing corporate applications.
  7. To support the massive users working remotely, IT should add more capacity to the network bandwidth, VDI, VPNs and MFA services.
  8. Validate and adjust incident-response (IR) and business-continuity (BC)/disaster-recovery (DR) plans.
  9. Expand monitoring of data access and end points, since the usual detection mechanism such as IDS/IPS, proxies, etc. will not secure users working from home. 
  10. Clarify incident-response protocols. When a breach occurs, security teams must know how to report and take action on it.

Source: https://www.mckinsey.com/business-functions/risk/our-insights/cybersecurity-tactics-for-the-coronavirus-pandemic?cid=other-eml-alt-mip mck&hlkid=cc61f434b9354af8aaf986862aa59350&hctky=3124098&hdpid=fd48c3f4-6cf9-4203-bfae-3df232c30bb7

AWS Cloud Architecture Best Practices

AWS services have many capabilities.  When migrating existing applications to the cloud or creating new applications for the cloud, it is important to know these AWS capabilities in order to architect the most resilient, efficient, and scalable solution for your applications.

Cloud architecture and on-premise architecture differs in so many ways.  In the cloud, you treat the infrastructure as a configurable and flexible software as opposed to hardware. You need to have a different mindset when architecting in the cloud because the cloud has a different way of solving problems.

You have to consider the following design principles in AWS cloud:

  1. Design for failure by implementing redundancy everywhere.  Components fail all the time.  Even whole site fail sometimes.  For example, if you implement redundancy of your web/application servers in different availability zones, your application will be more resilient when one availability zone fails.
  2. Implement scalability.  One of the advantages of using the cloud vs on-premise is the ability to grow and shrink the resources you need depending on the demand.  AWS supports scaling your resources vertically and horizontally, even automating it by using auto-scaling.
  3. Use AWS storage service that fits your use case.  AWS has several storage services with different properties, cost and functionality.  Amazon S3 is used for web applications that need large-scale storage capacity and performance.  It is also used  for backup and disaster recovery.  Amazon Glacier is used for data archiving and long-term backup.  Amazon EBS is a block storage used for mission-critical applications. Amazon EFS (Elastic File System) is used for SMB or NFS shares.
  4. Choose the right database solution. Match technology to the workload: Amazon RDS is for relational databases. Amazon DynamoDB is for NoSQL databases and Amazon Redshift is for data warehousing.
  5. Use caching to improve end user experience.  Caching minimizes redundant data retrieval operations making future requests faster.   Amazon CloudFront is a content delivery network that caches your website via edge devices located around the world. Amazon ElastiCache is for caching data for mission-critical database applications.
  6. Implement defense-in-depth security.  This means building security at every layer.  Referencing the AWS “Shared Security” model, AWS is in-charge of securing the cloud infrastructure (including physical layer and hypervisor layer) while the costumer is in-charge of the majority of the layers from the operating system up to the application layer.  This means customer is still responsible for patching the OS and making the application as secure as possible.  AWS provides security tools that will make your application secure such as IAM, security groups, network ACL’s, CloudTrail, etc.
  7. Utilize parallel processing.  For instance, multi-thread requests by using concurrent threads instead of sequential requests.  Another example is to deploy multiple web or application servers behind load balancers so that requests can be processed by multiple servers at once.
  8. Decouple your applications. IT systems should be designed in a way that reduces inter-dependencies, so that a change or failure in one component does not cascade to other components.  Let the components interact with each other only through standard APIs.
  9.  Automate your environment. Remove manual process to improve system’s stability and consistency.  AWS offers many automation tools to ensure that your infrastructure can respond quickly to changes.
  10. Optimize for cost.  Ensure that your resources are sized appropriately (they can scale in and out based on need),  and that you are taking advantage of different pricing options.

Sources: AWS Certified Solutions Architect Official Study Guide; Global Knowledge Architecting on AWS 5.1 Student Guide

New Book: Organization and Management

Organization and Management

DepEd K-12 Curriculum Compliant
Outcomes Based Education (OBE) Designed
Grade Level: Grade 11
Semester: 1st Semester
Strands: ABM, GAS
Authors: Palencia J, Palencia F, Palencia S.
ISBN: 978-621-436-005-5
Edition: First Edition
Year Published: 2019
Language: English
No. of pages: 
Size: 7 x 10 inches

About the book:
This book deals with the basic concepts, principles, and processes related to business organization, and the functional areas of management. Emphasis is given to the study of management functions like planning, organizing, staffing, leading, controlling, and the roles of these functions in entrepreneurship.

Contents:
Chapter 1 – Nature and Concept of Management
Chapter 2 – The Firm and Its Environment
Chapter 3 – Planning
Chapter 4 – Organizing
Chapter 5 – Staffing
Chapter 6 – Leading
Chapter 7 – Controlling
Chapter 8 – Introduction to the Different Functional Areas of Management
Chapter 9 – Special Topics in Management

Please contact me if your school is interested to review this textbook for possible adoption.

Securing Your Apps on Amazon AWS

One thing to keep in mind when putting your company’s applications in the cloud, specifically on Amazon AWS, is that you are still largely responsible for securing them. Amazon AWS has solid security in place, but you do not entrust the security aspect to Amazon thinking that your applications are totally secure because they are hosted there. In fact, Amazon AWS has a shared security responsibility model depicted by this diagram:

Source:  Amazon AWS

Amazon AWS is responsible for the physical and infrastructure security, including hypervisor, compute, storage, and network security; and the customer is responsible for application security, data security, Operating System (OS) patching and hardening, network and firewall configuration, identity and access management, and client and server-side data encryption.

However, Amazon AWS provides a slew of security services to make your applications more secure. They provide the AWS IAM for identity and access management, Security Groups to shield EC2 instances (or servers), Network ACLs that act as firewall for your subnets, SSL encryption for data transmission, and user activity logging for auditing. As a customer, you need to understand, design, and configure these security settings to make your applications secure.

In addition, there are advance security services that Amazon AWS provides, so that you don’t have to build them, including the AWS Directory Service for authentication, AWS KMS for Security Key Management, AWS WAF Web Application Firewall for deep packet inspection, and DDOS mitigation.

There is really no perfect security, but securing your infrastructure at every layer tremendously improves the security of your data and applications in the cloud.

Building an Enterprise Private Cloud

Businesses are using public clouds such as Amazon AWS, VMware vCloud or Microsoft Azure because they are relatively easy to use, they are fast to deploy, businesses can buy resources on demand, and most importantly, they are relatively cheap (because there is no operational overhead in building, managing and refreshing an on-premise infrastructure). But there are downsides to using public cloud, such as security and compliance, diminished control of data, data locality issue, and network latency and bandwidth. On-premise infrastructure is still the most cost effective for regulated data and for applications with predictable workloads (such as ERP, local databases, end-user productivity tools, etc).

However, businesses and end-users are expecting and demanding cloud-like services from their IT departments for these applications that are best suited on-premise. So, IT departments should build and deliver an infrastructure that has the characteristics of a public cloud (fast, easy, on-demand, elastic, etc) and the reliability and security of the on-premise infrastructure – an enterprise private cloud.

An enterprise cloud is now possible to build because of the following technology advancements:

  1. hyper-converged solution
  2. orchestration tools
  3. flash storage

When building an enterprise cloud, keep in mind the following:

  1. They should be 100% virtualized.
  2. There should be a mechanism for self-service provisioning, monitoring, billing and charge back.
  3. A lot of operational functions should be automated.
  4. Compute and storage can be scaled-out.
  5. It should be resilient – no single point of failure.
  6. Security should be integrated in the infrastructure.
  7. There should be a single management platform.
  8. Data protection and disaster recovery should be integrated in the infrastructure.
  9. It should be application-centric instead of infrastructure-centric.
  10. Finally, it should be able to support legacy applications as well as modern apps.

Important Responsibilities of IT Infrastructure Operations

The main function of IT operations is to keep IT services running smoothly and efficiently. It would be nirvana if IT infrastructure services just work perfectly throughout their lifespan after they are initially installed and configured. However, the reality is that hardware fails, bugs are found, features need to be added, security flaws are found, patches need to be applied, usage fluctuates, data needs to be protected, upgrades need to be done, demand increases, etc. The following are the important job of IT operations:

Monitoring

Monitoring is the only way to keep track of the health and availability of the systems. Monitoring can be accomplished by looking at the system’s health via dashboard or console, or via specialized monitoring appliances. One major component of monitoring is alerting via email or pagers when there is a major issue. Monitoring can also come from incident tickets generated by machines or end users that may not be apparent via machine monitoring. System logs can also be used for trending and monitoring as it can bring into light some flaws on the system.

Troubleshooting

Once issues are detected, IT operations should be able to troubleshoot these issues and fix them as soon as possible to bring the service back online. Issues that are more complicated to fix should be escalated to vendors, higher level support, or engineers and developers.

Change Control

IT operations should not make any changes (such as configuration change, hardware replacement, upgrades, etc) without following the proper change control procedure. More than 50% of outages are caused by changes on the system. IT services are often tightly integrated with other system and a change on one system may be able to affect the others. Subject matter experts of the various systems should make sure that a change will not affect their system. Planning and testing are vital steps in performing changes.

Capacity planning

IT operations should monitor and trend the utilization of resources (compute, storage, network) and allocate resources to ensure that there is enough capacity to serve demand. They should be able to predict and allocate resources so that there is capacity when they are needed.

Performance optimization

IT operations should optimize IT services and ensure efficient use of resources. The goal is provide an excellent user experience for these services. Mechanisms such as redundancy, local load balancing, global load balancing and caching improves utilization, efficiency and end user experience.

Backups

In addition to keeping the IT services running smoothly, IT operations should also protect these systems and their data by backing them up and replicating them to a remote site. The goal is to bring these systems back online in as little time as possible when there is a catastrophic failure on the systems.

Security

IT operations should also be responsible for securing the systems. Due to its enormous task, a lot of companies employ a dedicated Security Operations Center (SOC) that watches security breaches.

Automation

One of the goals of IT operations is to automate most manual activities via scripting and self-healing mechanism. This enables them to focus on higher value tasks and not get bogged down on repetitive tasks.